Indian Institute of Science Education \& Research Kolkata

DMS MSc Examination

INSTRUCTIONS

You have $\mathbf{3}$ hours.
$4^{\text {th }}$ June 2023

- The examination is scored out of $\mathbf{1 0 0}$ points.
- Answers without justification will receive NO credit.
- If you are using a result/theorem, state it clearly before using it.

Good luck!

Question 1 [5+5 points]
(i) Let f be a continuous function on $[a, b], \infty<a<b<\infty$. Assume that f has double derivative on (a, b) to be denoted by $f^{\prime \prime}$. Suppose that the line joining $(a, f(a))$ and $(b, f(b))$ intersects the graph of f at a third point $(c, f(c))$ where $c \in(a, b)$. Prove that there exists a $t \in(a, b)$ such that $f^{\prime \prime}(t)=0$.
(ii) For a differentiable function ϕ on $[a, b]$ suppose that there is a constant $M>0$ such that $\phi^{\prime}(t) \geq M \forall t \in[a, b]$. Prove that

$$
\left|\int_{a}^{b} \sin (\phi(t)) d t\right| \leq \frac{\phi(b)-\phi(a)}{M}
$$

Question 2 [10 points]
Let $S=(0,1) \cap \mathbb{Q}$ and $S^{\prime}=(0,1) \backslash S$ where \mathbb{Q} denotes the set of rational numbers. Does there exist a continuous function $f:(0,1) \rightarrow(0,1)$ such that $f(S) \subset S^{\prime}$ and $f\left(S^{\prime}\right) \subset S ?$

Question 3 [6+4 points]
Consider the series

$$
\sum_{n=3}^{\infty} \frac{1}{n^{a}(\log n)^{b}}
$$

(i) Prove that the above series is convergent if $a>1$ and divergent if $a<1$.
(ii) What will happen if $a=1$?

Question 4 [5 points]
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a periodic function. If $\lim _{x \rightarrow \infty} f(x)$ exists then show that f is a constant function.

Question 5 [6 points]
Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a decreasing sequence of positive real numbers. Suppose the series $\sum_{n=1}^{\infty} a_{n}$ converges. Show that the sequence $\left\{n a_{n}\right\}_{n \in \mathbb{N}}$ converges to zero as $n \rightarrow \infty$.

Question 6 [6+3 points]
Consider the sequence of functions $f_{m}:[0,1] \rightarrow \mathbb{R}$ defined by the following

$$
f_{m}(x):=\lim _{n \rightarrow \infty}(\cos (m!\pi x))^{2 n}
$$

(i) Show that the above sequence of functions converges pointwise to a function $f:[0,1] \rightarrow \mathbb{R}$ which is not Riemann integrable on $[0,1]$.
(ii) Is the above convergence uniform? Justify.

Question 7 [5 points]
Let $A \in M_{n}(\mathbb{R})$ be an invertible matrix with integer entries. Show that A^{-1} has integer entries if and only if $\operatorname{det}(A)= \pm 1$.

Question 8 [5 points]
Let $A, B \in M_{9}(\mathbb{R})$ be such that $\operatorname{rank}(A)=3$ and $\operatorname{rank}(B)=5$. Show that there is an $x \in \mathbb{R}^{9}$ such that $A x=B x=0$.

Question 9 [5+5 points]
Let n be a natural number with $n \geq 2$.
(i) When n is odd, show that every invertible linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ has a one-dimensional subspace $L \subset \mathbb{R}^{n}$ such that $T(L)=L$.
(ii) For $n=2$, give an example of an invertible linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that T does not have any one-dimensional invariant subspace. Can you do it for $n=4$?

Question 10 [10 points]
Let $\mathbb{K}=\mathbb{R}$ or \mathbb{C} and let V be a finite dimensional vector space over \mathbb{K}. A subset $B \subset V$ has the property that every function $f: B \rightarrow \mathbb{K}$ has a unique linear extension i.e., there exists a unique \mathbb{K}-linear map $\tilde{f}: V \rightarrow \mathbb{K}$ such that $\tilde{f}(x)=f(x)$ for all $x \in B$. Show that B is a basis for V.

Question 11 [5 points]
Consider the product group $\mathbb{R}^{*} \times \mathbb{R}$, where \mathbb{R}^{*} is the multiplicative group of non-zero real numbers and \mathbb{R} is the additive group of real numbers. Let \mathbb{C}^{*} be the multiplicative group of non-zero complex numbers. Let $f: \mathbb{R}^{*} \times \mathbb{R} \rightarrow \mathbb{C}^{*}$ be the map defined by

$$
f(r, \theta)=|r| e^{2 \pi i \theta}, \quad \forall(r, \theta) \in \mathbb{R}^{*} \times \mathbb{R}
$$

Show that f is a surjective group homomorphism. Determine the kernel of f.
Question 12 [5 points]
Find all the elements of order 2 in the permutation group S_{4}. Determine the subgroup of S_{4} generated by the elements of order 2 .

Question 13 [3+2 points]
Let R be a ring with 1 and $x, y \in R$ be such that $x y=1$ and $y x \neq 1$.
(i) Prove that $1-y x$ is an idempotent element and $y(1-y x)$ is a nilpotent element in R.
(ii) Show that there are infinitely many nilpotent elements in R.
[An element $a \in R$ is called idempotent if $a^{2}=a$, and nilpotent if $a^{n}=0$ for some $n \in \mathbb{Z}^{+}$]

Question 14 [3+2 points]
Let R be a commutative ring with 1 such that $x^{3}=x$ for all $x \in R$.
(i) Show that any prime ideal P in R is maximal.
(ii) What is the cardinality of R / P for a prime ideal P ?

