Indian Institute of Science Education & Research Kolkata

DMS MSc Examination

INSTRUCTIONS

You have 3 hours.

 $4^{\rm th}$ June 2023

- The examination is scored out of **100 points**.
- $\circ\,$ Answers without justification will receive ${\bf NO}$ credit.
- $\circ\,$ If you are using a result/theorem, state it clearly before using it.

Good luck!

Question 1 [5+5 points]

(i) Let f be a continuous function on [a, b], $\infty < a < b < \infty$. Assume that f has double derivative on (a, b) to be denoted by f''. Suppose that the line joining (a, f(a)) and (b, f(b)) intersects the graph of f at a third point (c, f(c)) where $c \in (a, b)$. Prove that there exists a $t \in (a, b)$ such that f''(t) = 0.

(ii) For a differentiable function ϕ on [a, b] suppose that there is a constant M > 0 such that $\phi'(t) \ge M \ \forall t \in [a, b]$. Prove that

$$\left|\int_{a}^{b}\sin(\phi(t))dt\right| \leq \frac{\phi(b) - \phi(a)}{M}$$

Question 2 [10 points]

Let $S = (0,1) \cap \mathbb{Q}$ and $S' = (0,1) \setminus S$ where \mathbb{Q} denotes the set of rational numbers. Does there exist a continuous function $f : (0,1) \to (0,1)$ such that $f(S) \subset S'$ and $f(S') \subset S$?

Question 3 [6+4 points] Consider the series

$$\sum_{n=3}^{\infty} \frac{1}{n^a (\log n)^b}$$

(i) Prove that the above series is convergent if a > 1 and divergent if a < 1.

(ii) What will happen if a = 1?

Question 4 [5 points]

Let $f : \mathbb{R} \to \mathbb{R}$ be a periodic function. If $\lim_{x\to\infty} f(x)$ exists then show that f is a constant function.

Question 5 [6 points]

Let $\{a_n\}_{n\in\mathbb{N}}$ be a decreasing sequence of positive real numbers. Suppose the series $\sum_{n=1}^{\infty} a_n$ converges. Show that the sequence $\{na_n\}_{n\in\mathbb{N}}$ converges to zero as $n \to \infty$.

Question 6 [6+3 points]

Consider the sequence of functions $f_m: [0,1] \to \mathbb{R}$ defined by the following

$$f_m(x) := \lim_{n \to \infty} (\cos(m!\pi x))^{2n}.$$

(i) Show that the above sequence of functions converges pointwise to a function $f : [0, 1] \to \mathbb{R}$ which is not Riemann integrable on [0, 1].

(ii) Is the above convergence uniform? Justify.

Question 7 [5 points]

Let $A \in M_n(\mathbb{R})$ be an invertible matrix with integer entries. Show that A^{-1} has integer entries if and only if $\det(A) = \pm 1$.

Question 8 [5 points]

Let $A, B \in M_9(\mathbb{R})$ be such that rank(A) = 3 and rank(B) = 5. Show that there is an $x \in \mathbb{R}^9$ such that Ax = Bx = 0.

Question 9 [5+5 points]

Let n be a natural number with $n \ge 2$.

(i) When n is odd, show that every invertible linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ has a one-dimensional subspace $L \subset \mathbb{R}^n$ such that T(L) = L.

(ii) For n = 2, give an example of an invertible linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ such that T does not have any one-dimensional invariant subspace. Can you do it for n = 4?

Question 10 [10 points]

Let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} and let V be a finite dimensional vector space over \mathbb{K} . A subset $B \subset V$ has the property that every function $f: B \to \mathbb{K}$ has a unique linear extension i.e., there exists a unique \mathbb{K} -linear map $\tilde{f}: V \to \mathbb{K}$ such that $\tilde{f}(x) = f(x)$ for all $x \in B$. Show that B is a basis for V.

Question 11 [5 points]

Consider the product group $\mathbb{R}^* \times \mathbb{R}$, where \mathbb{R}^* is the multiplicative group of non-zero real numbers and \mathbb{R} is the additive group of real numbers. Let \mathbb{C}^* be the multiplicative group of non-zero complex numbers. Let $f : \mathbb{R}^* \times \mathbb{R} \to \mathbb{C}^*$ be the map defined by

$$f(r,\theta) = |r|e^{2\pi i\theta}, \quad \forall \ (r,\theta) \in \mathbb{R}^* \times \mathbb{R}.$$

Show that f is a surjective group homomorphism. Determine the kernel of f.

Question 12 [5 points]

Find all the elements of order 2 in the permutation group S_4 . Determine the subgroup of S_4 generated by the elements of order 2.

Question 13 [3+2 points]

Let R be a ring with 1 and $x, y \in R$ be such that xy = 1 and $yx \neq 1$.

(i) Prove that 1 - yx is an idempotent element and y(1 - yx) is a nilpotent element in R.

(ii) Show that there are infinitely many nilpotent elements in R.

[An element $a \in R$ is called *idempotent* if $a^2 = a$, and *nilpotent* if $a^n = 0$ for some $n \in \mathbb{Z}^+$]

Question 14 [3+2 points]

Let R be a commutative ring with 1 such that $x^3 = x$ for all $x \in R$.

(i) Show that any prime ideal P in R is maximal.

(ii) What is the cardinality of R/P for a prime ideal P?